Advertisements
Advertisements
प्रश्न
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
पर्याय
\[\frac{1}{2}\]
2
\[\frac{1}{4}\]
4
उत्तर
Find the value of `{8^ (- 4/3)÷ 2^-2}^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(3x-4/3)÷2^-2 }^(1/2)`
`= {2^(3x(-4)/3)÷2^-2 }^(1/2)`
`= {2^-4 ÷2^-2 }^(1/2)`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
`= {2^(-4xx1/2)÷ 2^(-2xx1/2)}`
` = {2^2 ÷ 2^-1}`
` = {(1/2^2)/(1/2)}`
`{8^ (- 4/3)÷ 2^-2}^(1/2) = {1/(2xx2) xx 2/1}`
=`{1/(2xx2) xx 2/1}`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
The product of the square root of x with the cube root of x is
The seventh root of x divided by the eighth root of x is
If 9x+2 = 240 + 9x, then x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
The value of \[\sqrt{5 + 2\sqrt{6}}\] is