Advertisements
Advertisements
प्रश्न
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
पर्याय
\[\sqrt{3} - \sqrt{2}\]
\[\sqrt{3} + \sqrt{2}\]
\[\sqrt{5} + \sqrt{6}\]
none of these
उत्तर
Given that:`sqrt(5+2sqrt6)`.It can be written in the form `(a-b )^2 = a^2 +b^2 - 2 ab` as
`sqrt(5+2sqrt6) = sqrt(3+2+2xxsqrt3 xxsqrt2)`
` =sqrt((sqrt3)^2 + (sqrt2)^2+ 2 xx sqrt3 xxsqrt2)`
`= sqrt((sqrt3+sqrt2)^2)`
` = sqrt3 +sqrt2.`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Simplify:
`(0.001)^(1/3)`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Solve the following equation:
`3^(x+1)=27xx3^4`
State the product law of exponents.
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=