Advertisements
Advertisements
प्रश्न
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
पर्याय
3
-3
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
उत्तर
We have to find the value of x provided`(3^(5x )xx 81^2 xx 6561)/(3^2x) = 3^7`
So,
`(3^(5x)xx 3^(4xx2) xx 3^8)/3^(2x) = 3^7`
By using law of rational exponents we get
`3^(5x +8 +8-2x)= 3^7`
By equating exponents we get
`5x +8 +8 -2x =7`
` 3x +16 = 7`
`3x = 7-16`
`3x=-9`
`x=(-9)/3`
`x=-3`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
If `1176=2^a3^b7^c,` find a, b and c.
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
State the power law of exponents.
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to