Advertisements
Advertisements
प्रश्न
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
पर्याय
0.1718
5.8282
0.4142
2.4142
उत्तर
Given that `sqrt2= 1.4142`, we need to find the value of .`sqrt((sqrt2-1)/(sqrt2+1))`
We can rationalize the denominator of the given expression. We know that rationalization factor for `sqrt2+1` is`sqrt2-1`. We will multiply numerator and denominator of the given expression `sqrt((sqrt2-1)/(sqrt2+1))`by`sqrt2-1`, to get
`sqrt((sqrt2-1)/(sqrt2+1)) = sqrt((sqrt2-1)/(sqrt2+1)xxsqrt((sqrt2-1)/(sqrt2-1)))`
` = sqrt((sqrt2-1)^2/((sqrt2)^2-1))`
` = sqrt((sqrt2-1)^2)/(sqrt((sqrt2)^2-1))`
\[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}} = \frac{\sqrt{2} - 1}{1}\]
Putting the value of `sqrt2`, we get
`sqrt2 -1 = 4.4142 - 1`
` = 0.4142`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If (23)2 = 4x, then 3x =
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Find:-
`125^((-1)/3)`