Advertisements
Advertisements
प्रश्न
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
विकल्प
0.1718
5.8282
0.4142
2.4142
उत्तर
Given that `sqrt2= 1.4142`, we need to find the value of .`sqrt((sqrt2-1)/(sqrt2+1))`
We can rationalize the denominator of the given expression. We know that rationalization factor for `sqrt2+1` is`sqrt2-1`. We will multiply numerator and denominator of the given expression `sqrt((sqrt2-1)/(sqrt2+1))`by`sqrt2-1`, to get
`sqrt((sqrt2-1)/(sqrt2+1)) = sqrt((sqrt2-1)/(sqrt2+1)xxsqrt((sqrt2-1)/(sqrt2-1)))`
` = sqrt((sqrt2-1)^2/((sqrt2)^2-1))`
` = sqrt((sqrt2-1)^2)/(sqrt((sqrt2)^2-1))`
\[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}} = \frac{\sqrt{2} - 1}{1}\]
Putting the value of `sqrt2`, we get
`sqrt2 -1 = 4.4142 - 1`
` = 0.4142`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Find:-
`16^(3/4)`