Advertisements
Advertisements
प्रश्न
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
उत्तर
Let 2x = 3y = 12z = k
`rArr2=k^(1/x),` `3=k^(1/y),` `12=k^(1/z)`
Now,
`12=k^(1/z)`
`rArr2^2xx3=k^(1/z)`
`rArr(k^(1/x))^2xxk^(1/y)=k^(1/z)`
`rArrk^(2/x+1/y)=k^(1/z)`
`rArr2/x+1/y=1/z`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
Find:-
`32^(1/5)`
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`