Advertisements
Advertisements
प्रश्न
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
उत्तर
Let 2x = 3y = 6-z = k
`rArr2=k^(1/x),` `3=k^(1/y),` `6=k^(1/-z)`
Now,
`6 = 2xx3=k^(1/-z)`
`rArrk^(1/x)xxk^(1/y)=k^(1/-z)`
`rArrk^(1/x+1/y)=k^(1/-z)`
`rArr1/x+1/y=1/-z`
`rArr1/x+1/y+1/z=0`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Find:-
`9^(3/2)`
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equation for x:
`4^(2x)=1/32`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`root5((32)^-3)`
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`125^((-1)/3)`