Advertisements
Advertisements
प्रश्न
Find:-
`64^(1/2)`
उत्तर
We can write the given expression as follows
⇒ `64^(1/2) = (8^2)^(1/2)`
On simplifying it
⇒ `64^(1/2) = 8^(2 xx 1/2)`
∴ `64^(1/2) = 8`
APPEARS IN
संबंधित प्रश्न
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
If 102y = 25, then 10-y equals
The simplest rationalising factor of \[\sqrt[3]{500}\] is