Advertisements
Advertisements
प्रश्न
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
उत्तर
It is given that `3^(4x) = (81)^-1` and `10^(1/y)=0.0001`
Now,
`3^(4x) = (81)^-1`
`rArr3^(4x)=(3^4)^(-1)`
`rArr(3^x)^4=(3^-1)^4`
`rArrx=-1`
And,
`10^(1/y)=0.0001`
`rArr10^(1/y)=1/10000`
`rArr10^(1/y)=(1/10)^4`
`rArr10^(1/y)=(10)^-4`
`rArr1/y=-4`
`rArry=-1/4`
Therefore, the value of `2^(-x+4y)` is `2^(1+4(-1/4))=2^0=1`.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 9x+2 = 240 + 9x, then x =
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is