हिंदी

For Any Positive Real Number X, Write the Value of { ( X a ) B } 1 a B { ( X B ) C } 1 B C { ( X C ) a } 1 C a - Mathematics

Advertisements
Advertisements

प्रश्न

For any positive real number x, write the value of  \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]

संक्षेप में उत्तर

उत्तर

\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] So,

\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `{x^(ab)}^(1/(ab)) {x^(bc)}^(1/(bc)) {x^(ca)}^(1/(ca))`

=`x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`

= `x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`

`= x^1 xx x^1 xx x^1`

By using rational exponents `a^m xx a^n xx a^(m+n), ` we get

\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)`

`=x^3`

Hence the value of

\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)` is `=x^3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Exponents of Real Numbers - Exercise 2.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 2 Exponents of Real Numbers
Exercise 2.3 | Q 13 | पृष्ठ २९

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×