Advertisements
Advertisements
प्रश्न
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
उत्तर
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] So,
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `{x^(ab)}^(1/(ab)) {x^(bc)}^(1/(bc)) {x^(ca)}^(1/(ca))`
=`x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`
= `x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`
`= x^1 xx x^1 xx x^1`
By using rational exponents `a^m xx a^n xx a^(m+n), ` we get
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)`
`=x^3`
Hence the value of
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)` is `=x^3`
APPEARS IN
संबंधित प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 24 × 42 =16x, then find the value of x.
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is