Advertisements
Advertisements
प्रश्न
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
उत्तर
We have to simplify. `[{(625)^((-1)/2)}^((-1)/4)]^2`So,
`[{(625)^((-1)/2)}^((-1)/4)]^2 = [{1/(625^(1/2))}^((-1)/4)\]^2`
`= [{1/5^(4 xx -1/2)}^((-1)/4)]^2`
`= [{1/5^2}^((-1)/4)]^2`
`= [{1/5^(2 xx 1/4)}]^2`
`[{(625)^((-1)/2)}^((-1)/4)]^2` `= [{1/5^((-1)/2)}]^2`
`[{1/(1/5^(1/2))}]`
`= [{1 xx 5^(1/2)}]^2`
`= 5^(1/2xx2)`
= 5
Hence, the value of `[{(625)^((-1)/2)}^((-1)/4)]^2` is 5.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If (23)2 = 4x, then 3x =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]