Advertisements
Advertisements
प्रश्न
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
उत्तर
We have to simplify. `[{(625)^((-1)/2)}^((-1)/4)]^2`So,
`[{(625)^((-1)/2)}^((-1)/4)]^2 = [{1/(625^(1/2))}^((-1)/4)\]^2`
`= [{1/5^(4 xx -1/2)}^((-1)/4)]^2`
`= [{1/5^2}^((-1)/4)]^2`
`= [{1/5^(2 xx 1/4)}]^2`
`[{(625)^((-1)/2)}^((-1)/4)]^2` `= [{1/5^((-1)/2)}]^2`
`[{1/(1/5^(1/2))}]`
`= [{1 xx 5^(1/2)}]^2`
`= 5^(1/2xx2)`
= 5
Hence, the value of `[{(625)^((-1)/2)}^((-1)/4)]^2` is 5.
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
If 24 × 42 =16x, then find the value of x.
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]