Advertisements
Advertisements
प्रश्न
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
पर्याय
\[2\sqrt{5} + 3\]
\[2\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} - \sqrt{3}\]
उत्तर
We know that rationalization factor for `asqrtb - sqrtc` is .`asqrtb +sqrtc` Hence rationalization factor of `2sqrt5-sqrt3`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`(0.001)^(1/3)`
State the quotient law of exponents.
Write the value of \[\sqrt[3]{125 \times 27}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Find:-
`32^(2/5)`