Advertisements
Advertisements
प्रश्न
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
विकल्प
\[2\sqrt{5} + 3\]
\[2\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} + \sqrt{3}\]
\[\sqrt{5} - \sqrt{3}\]
उत्तर
We know that rationalization factor for `asqrtb - sqrtc` is .`asqrtb +sqrtc` Hence rationalization factor of `2sqrt5-sqrt3`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Find:-
`125^((-1)/3)`