Advertisements
Advertisements
प्रश्न
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
विकल्प
`sqrt3 - 5`
`3 - sqrt5`
`sqrt3 - sqrt5`
`sqrt3 + sqrt5`
उत्तर
The simplest rationalising factor of `sqrt3 + sqrt5` is `bbunderline(sqrt3 - sqrt5)`.
Explanation:
The simplest rationalising factor of `sqrt3 + sqrt5` is `sqrt3 - sqrt5` as `(sqrta + sqrtb)(sqrta - sqrtb) = a - b`.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If `1176=2^a3^b7^c,` find a, b and c.
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
Find:-
`32^(2/5)`