Advertisements
Advertisements
प्रश्न
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
उत्तर
`9^(x+2)=240+9^x`
`rArr9^x xx 9^2=240+9^x`
`rArr9^x(9^2-1)=240`
`rArr9^x(81-1)=240`
`rArr9^x xx80=240`
`rArr9^x=240/80`
`rArr3^(2x)=3^1`
⇒ 2x = 1
`rArrx=1/2`
`therefore(8x)^x=(8xx1/2)^(1/2)=(4)^(1/2)=2`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
State the power law of exponents.
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Find:-
`32^(1/5)`