Advertisements
Advertisements
प्रश्न
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
उत्तर
`3^(x+1)=9^(x-2)`
`rArr3^x xx3=9^x/9^2`
`rArr3^x xx3=(3^2)^x/(3^2)^2`
`rArr3^x xx3=3^(2x)/3^4`
`rArr3^4xx3=3^(2x)/3^4`
`rArr3^5=3^x`
Comparing both sides, we get
x = 5
So,
`2^(1+x)=2^(1+5)=2^6=64`
APPEARS IN
संबंधित प्रश्न
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`