Advertisements
Advertisements
प्रश्न
Simplify:
`(16^(-1/5))^(5/2)`
उत्तर
Given `(16^(-1/5))^(5/2)`
`(16^(-1/5))^(5/2)=16^(-1/5xx5/2)`
`=16^(-1/2)`
By using law of rational exponents `a^-n=1/a^n` we have
`(16^(-1/5))^(5/2)=1/16^(1/2)`
`=1/4^(2xx1/2)`
`=1/4`
Hence the value of `(16^(-1/5))^(5/2)` is `1/4`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Solve the following equation:
`3^(x+1)=27xx3^4`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Write the value of \[\sqrt[3]{125 \times 27}\].
If o <y <x, which statement must be true?
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=