Advertisements
Advertisements
Question
Simplify:
`(16^(-1/5))^(5/2)`
Solution
Given `(16^(-1/5))^(5/2)`
`(16^(-1/5))^(5/2)=16^(-1/5xx5/2)`
`=16^(-1/2)`
By using law of rational exponents `a^-n=1/a^n` we have
`(16^(-1/5))^(5/2)=1/16^(1/2)`
`=1/4^(2xx1/2)`
`=1/4`
Hence the value of `(16^(-1/5))^(5/2)` is `1/4`
APPEARS IN
RELATED QUESTIONS
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Solve the following equation:
`3^(x+1)=27xx3^4`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Find:-
`32^(1/5)`
Which of the following is equal to x?