Advertisements
Advertisements
Question
Simplify:
`root5((32)^-3)`
Solution
Given `root5((32)^-3)`
`=root5((1/32)^3)`
`=(1/32)^(3/5)`
`=(1/(2)^5)^(3/5)`
`=(1/2)^(5xx3/5)`
`=(1/2)^3`
`=1/8`
APPEARS IN
RELATED QUESTIONS
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The positive square root of \[7 + \sqrt{48}\] is
Simplify:
`11^(1/2)/11^(1/4)`