Advertisements
Advertisements
Question
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Solution
It is given that `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1)`
`thereforea^(q-r)b^(r-p)c^(p-q)`
`=(xy^(p-1))^(q-r)(xy^(q-1))^(r-p)(xy^(r-1))^(p-q)`
`=x^((q-r))y^((p-1)(q-r))x^((r-p))y^((r-p)(q-1))x^((p-q))y^((p-q)(r-1))`
`=x^((q-r))x^((r-p))x^((p-q))y^((p-1)(q-r))y^((r-p)(q-1))y^((p-q)(r-1))`
`=x^((q-r)+(r-p)+(p-q))y^((p-1)(q-r)+(r-p)(q-1)+(p-q)(r-1))`
`=x^(q-r+r-p+p-q)y^(pq-q-pr+r+rq-r-pq+p+pr-p-qr+q)`
`=x^0y^0`
= 1
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 9x+2 = 240 + 9x, then x =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
The positive square root of \[7 + \sqrt{48}\] is
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`