Advertisements
Advertisements
Question
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Solution
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrt(x^-3))^5`
As x is positive real number then we have
`(sqrt(x^-3))^5=(sqrt(1/x^3))^5`
`=(sqrt1/sqrt(x^3))^5`
`=(1/x^(3xx1/2))^5`
`=(1/x^(3/2))`
`(sqrt(x^-3))^5=(1^5/x^(3/2xx5))`
`=1/x^(15/2)`
Hence the simplified value of `(sqrt(x^-3))^5` is `1/x^(15/2)`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
State the product law of exponents.
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]