Advertisements
Advertisements
Question
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
Options
2
- \[\frac{1}{4}\]
9
- \[\frac{1}{8}\]
Solution
Given : `2^(m+n)/2^(n-m) = 16`
\[\frac{3^p}{3^n} = 81\] and and `a-2^(1/10)`
To find : `(a^(2m+n-p))/((a^(m-2n+2p))^-1)`
Find : `2^(m+n)/2^(n-m) = 16`
By using rational components `a^m/a^n = a^(m-n)`We get
`2^(m+n-n+m) = 16`
`2^(m+n-n+m) = 16`
`2^(2m) = 2^4`
By equating rational exponents we get
`2m = 4`
`m = 4/2`
`m=2`
Now, `(a(2m+n-p))/((a^(m-2n+2p))^-1`
\[\left( a^{2m + n - p} \right) . \left( a^{m - 2n + 2p} \right)\] we get
\[= a^{2m + n - p + m - 2n + 2p} \]
\[ = a^{3m - n + p} \]
\[\text { Now putting value of a } = 2^\frac{1}{10}\text { we get,} \]
\[ = 2^\frac{3m - n + p}{10} \]
\[ = 2^\frac{6 - n + p}{10}\]
Also,
\[\frac{3^p}{3^n} = 81\]
\[3^{p - n} = 3^4 \]
On comparing LHS and RHS we get,p - n = 4.
Now,
`(a^(2m+n-p))/(a^(m-2n+2p))^-1`= a3m - n + p
\[= 2^\frac{6 + (p - n)}{10} \]
\[ = 2^\frac{6 + 4}{10} \]
\[ = 2^\frac{10}{10} = 2^1 \]
\[ = 2\]
So, option (a) is the correct answer.
APPEARS IN
RELATED QUESTIONS
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If 24 × 42 =16x, then find the value of x.
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =