Advertisements
Advertisements
Question
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
Options
5a2bc2
25ab2c
5a3bc3
125a2bc2
Solution
Find value of \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\]
\[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] = `5sqrt(5^5 a^10 b^5 c^10)`
`= 5^(5 xx 1/5) a^(10 xx 1/5 ) b^(5 xx 1/5 ) c^(10xx1/5)`
`= 5^(5 xx 1/5) a^(10 xx 1/5 ) b^(5 xx 1/5 ) c^(10xx1/5)`
\[\sqrt[5]{3125 a^{10} b^5 c^{10}} = 5 a^2 b c^2\]
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Simplify:
`(16^(-1/5))^(5/2)`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Simplify:
`7^(1/2) . 8^(1/2)`