Advertisements
Advertisements
Question
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Solution
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
`=(x^(1/2))^(-2/3)(y^4)^(1/2)div(x xxy^(-1/2))^(1/2)`
`=(x^(1/2xx-2/3)xxy^(4xx1/2))/(x^(1/2)xxy^(-1/2xx1/2))`
`=(x^(-1/3)xxy^2)/(x^(1/2)xxy^(-1/4))`
By using the law of rational exponents, `a^mdiva^n=a^(m-n)` we have
`=x^(-1/3-1/2)xxy^(2+1/4)`
`=x^(-5/6)xxy^(9/4)`
`=1/x^(5/6)xxy^(9/4)`
`=y^(9/4)/x^(5/6)`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
ab + ba
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`