Advertisements
Advertisements
Question
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Solution
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(x^((-2)/3)y^((-1)/2))^2`
As x and y are positive real numbers then we have
`(x^((-2)/3)y^((-1)/2))^2=(x^((-2)/3)xxx^((-2)/3)xxy^((-1)/2)xxy^((-1)/2))`
By using law of rational exponents `a^-n=1/a^n` we have
`(x^((-2)/3)y^((-1)/2))^2=1/x^(2/3)xx1/x^(2/3)xx1/y^(1/2)xx1/y^(1/2)`
`(x^((-2)/3)y^((-1)/2))^2=1/(x^(2/3)xx x^(2/3))xx1/(y^(1/2)xxy^(1/2))`
By using law of rational exponents `a^m xx a^n=a^(m+n)` we have
`(x^((-2)/3)y^((-1)/2))^2=1/x^(2/3+2/3)xx1/y^(1/2+1/2)`
`=1/x^(4/3)xx1/y^(2/2)`
`=1/x^(4/3)xx1/y`
`=1/(x^(4/3)y)`
Hence the simplified value of `(x^((-2)/3)y^((-1)/2))^2` is `1/(x^(4/3)y)`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`