Advertisements
Advertisements
Question
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Solution
Given `(13)^(sqrtx)=4^4-3^4-6`
`(13)^(sqrtx)=(2^2)^4-3^4-6`
`rArr(13)^(sqrtx)=2^8-3^4-6`
`rArr(13)^sqrtx=256-81-6`
`rArr(13)^sqrtx=169`
`rArr(13)^sqrtx=(13)^2`
On comparing we get,
`sqrtx=2`
On squaring both side we get,
x = 4
Hence, the value of x = 4.
APPEARS IN
RELATED QUESTIONS
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `27^x=9/3^x,` find x.
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =