English

Show That: `(X^(A-b))^(A+B)(X^(B-c))^(B+C)(X^(C-a))^(C+A)=1` - Mathematics

Advertisements
Advertisements

Question

Show that:

`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`

Solution

`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`

LHS = `(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)`

`=[x^((a-b)(a+b))][x^((b-c)(b+c))][x^((c-a)(c+a))]`

`=x^((a^2-b^2))x^((b^2-c^2))x^((c^2-a^2))`

`=x^(a^2-b^2+b^2-c^2+c^2-a^2)`

`=x^0`

= 1

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 4.5 | Page 25

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×