Advertisements
Advertisements
Question
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
Options
\[5\sqrt{5}\]
\[\sqrt{5}\]
\[25\sqrt{5}\]
125
Solution
We have to find the value of `(2x)^x`if `4^x - 4^(x-1) = 24`
So,
Taking 4x as common factor we get
`4^x (1- 1/4) = 24`
`4^x (1-4^-1) = 24`
`4^x ((1xx4)/(1 xx4)-1/4) = 24`
`4^4 ((4-1)/4)= 24`
`4^x xx 3/4 = 24`
`4^x = 24 xx 4/3`
`4^x = 32`
`2^(2x) =2^5`
By equating powers of exponents we get
`2x = 5 `
`x=5/2`
By substituting `x=5/2` in `(2x)^x` we get
`(2x)^x=(2xx 5/2)^(5/2)`
= `(2xx5/2)^(5/2)`
`=5^(5/2)`
`=5^(5 xx1/2)`
`(2x)^x = 2sqrt(5^5)`
`=2sqrt (5xx5xx5xx5xx5)`
`= 5xx5 2sqrt5`
= `25sqrt5`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If o <y <x, which statement must be true?
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to