Advertisements
Advertisements
Question
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Options
\[3 + 2\sqrt{2}\]
\[\frac{1}{3 + 2\sqrt{2}}\]
\[3 - 2\sqrt{2}\]
\[\frac{3}{2} - \sqrt{2}\]
Solution
Given that `1/(sqrt9- sqrt8)`
We know that rationalization factor for `sqrt9 - sqrt8` is `sqrt9 + sqrt8`. We will multiply numerator and denominator of the given expression `1/(sqrt9- sqrt8)`by `sqrt9 + sqrt8`, to get
`1/(sqrt9- sqrt8) xx (sqrt9 + sqrt8)/(sqrt9 + sqrt8) = (sqrt9 + sqrt8)/ ((sqrt9)^2 - (sqrt8)^2) `
` = (sqrt9 + sqrt8) / (9-8)`
` = sqrt9 +sqrt2 sqrt4`
` = 3+2+sqrt2`
APPEARS IN
RELATED QUESTIONS
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
State the power law of exponents.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
`(2/3)^x (3/2)^(2x)=81/16 `then x =
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
Simplify:-
`(1/3^3)^7`