Advertisements
Advertisements
Question
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Options
\[\frac{4}{3}\]
4
3
`3/4`
Solution
Given that `(sqrt48+sqrt32)/(sqrt27 +sqrt18)`
We know that rationalization factor for `sqrt27 +sqrt18` is`sqrt27 - sqrt18` We will multiply numerator and denominator of the given expression `(sqrt48+sqrt32)/(sqrt27 +sqrt18)` by`sqrt27 - sqrt18`, to get
`(sqrt48+sqrt32)/(sqrt27 +sqrt18) xx (sqrt27-sqrt18)/(sqrt27 -sqrt18) = (sqrt48 xx sqrt27 - sqrt48 xx sqrt18 + sqrt32 xx sqrt27 - sqrt32 xx sqrt18)/ ((sqrt27)^2 - (sqrt18)^2)`
We can factor irrational terms as
` (sqrt(3) xx sqrt16 xx sqrt9 xx sqrt3 - sqrt3 xx sqrt16 xx sqrt9 xx sqrt2 +sqrt2 xx sqrt16 xx sqrt3 xx sqrt9 - sqrt2 xx sqrt16 xx sqrt9 xx sqrt2)/((sqrt27)^2 - (sqrt18)^2)`
`= ((sqrt3)^2 xx 4 xx 3 - sqrt(3xx2)xx 4 xx 3 + sqrt(2 xx3) xx 4 xx3 - (sqrt2)^2 xx 4 xx 3)/(27-18) `
`= (3xx12-12xxsqrt6+12 xxsqrt6 -2 xx12)/(27-18) `
`= (36-12sqrt6+12sqrt6-24)/(27-18)`
`= 12/9`
` = 4/3`
APPEARS IN
RELATED QUESTIONS
Find:-
`64^(1/2)`
Solve the following equation for x:
`7^(2x+3)=1`
Solve the following equation for x:
`2^(3x-7)=256`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
The product of the square root of x with the cube root of x is
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If 9x+2 = 240 + 9x, then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
The value of \[\sqrt{5 + 2\sqrt{6}}\] is