Advertisements
Advertisements
प्रश्न
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
विकल्प
\[\frac{4}{3}\]
4
3
`3/4`
उत्तर
Given that `(sqrt48+sqrt32)/(sqrt27 +sqrt18)`
We know that rationalization factor for `sqrt27 +sqrt18` is`sqrt27 - sqrt18` We will multiply numerator and denominator of the given expression `(sqrt48+sqrt32)/(sqrt27 +sqrt18)` by`sqrt27 - sqrt18`, to get
`(sqrt48+sqrt32)/(sqrt27 +sqrt18) xx (sqrt27-sqrt18)/(sqrt27 -sqrt18) = (sqrt48 xx sqrt27 - sqrt48 xx sqrt18 + sqrt32 xx sqrt27 - sqrt32 xx sqrt18)/ ((sqrt27)^2 - (sqrt18)^2)`
We can factor irrational terms as
` (sqrt(3) xx sqrt16 xx sqrt9 xx sqrt3 - sqrt3 xx sqrt16 xx sqrt9 xx sqrt2 +sqrt2 xx sqrt16 xx sqrt3 xx sqrt9 - sqrt2 xx sqrt16 xx sqrt9 xx sqrt2)/((sqrt27)^2 - (sqrt18)^2)`
`= ((sqrt3)^2 xx 4 xx 3 - sqrt(3xx2)xx 4 xx 3 + sqrt(2 xx3) xx 4 xx3 - (sqrt2)^2 xx 4 xx 3)/(27-18) `
`= (3xx12-12xxsqrt6+12 xxsqrt6 -2 xx12)/(27-18) `
`= (36-12sqrt6+12sqrt6-24)/(27-18)`
`= 12/9`
` = 4/3`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If 24 × 42 =16x, then find the value of x.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]