Advertisements
Advertisements
प्रश्न
`(2/3)^x (3/2)^(2x)=81/16 `then x =
विकल्प
2
3
4
1
उत्तर
We have to find value of x provided `(2/3)^x (3/2)^(2x)=81/16 `
So,
`(2/3)^x (3/2)^(2x)=81/16 `
`(2/3)^x (3/2)^(2x)= 3^4/3^4`
`(2x)/(3x) (3^(2x))/(2^(2x)) = 3^4/2^4`
`3^(2x -x)/2^(2x-x) = 3^4/2^4`
`3^x/2^x = 3^4/2^4`
Equating exponents of power we get x = 4.
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Solve the following equation for x:
`4^(2x)=1/32`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
State the quotient law of exponents.
If 24 × 42 =16x, then find the value of x.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =