Advertisements
Advertisements
प्रश्न
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
विकल्प
2
3
5
4
उत्तर
We have to find the value of x provided \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\]
So,
\[\frac{3^{2x - 8}}{3^2 × 5^2} = \frac{5^3}{5^x}\]
By cross multiplication we get
`3^(2x-8) xx 5^x = 3^2xx5^2 xx5^3`
By equating exponents we get
`3^(2x-8) = 3^2`
`2x - 8 = 2`
`2x= 2+8`
`2x = 10`
`x=10/2`
`x=5`
And
`5^x = 5^(3+2)`
`x=3+2`
`x=5`
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Simplify:
`root3((343)^-2)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
State the quotient law of exponents.
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
The value of 64-1/3 (641/3-642/3), is
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then