Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
उत्तर
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2^2)^(x-1)xx(2^-1)^(3-2x)=(2^-3)^x`
`rArr2^(2x-2)xx2^(2x-3)=2^(-3x)`
`rArr2^(2x-2+2x-3)=2^(-3x)`
`rArr2^(4x-5)=2^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
`rArr x = 5/7`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is