Advertisements
Advertisements
प्रश्न
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
उत्तर
`(a+b)^-1(a^-1+b^-1)=a^xb^y`
`rArr1/(a+b)(1/a+1/b)=a^xb^y`
`rArr1/(a+b)((a+b)/(ab))=a^xb^y`
`rArr(1/(ab))=a^xb^y`
`rArr(ab)^-1=a^xb6y`
`rArra^-1b^-1=a^xb^y`
⇒ x = -1 and y = -1
Therefore, the value of x + y + 2 is -1 - 1 + 2 = 0.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
Simplify:
`root5((32)^-3)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Simplify:
`11^(1/2)/11^(1/4)`