हिंदी

If a and B Are Different Positive Primes Such that `(A+B)^-1(A^-1+B^-1)=A^Xb^Y,` Find X + Y + 2. - Mathematics

Advertisements
Advertisements

प्रश्न

If a and b are different positive primes such that

`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.

उत्तर

`(a+b)^-1(a^-1+b^-1)=a^xb^y`

`rArr1/(a+b)(1/a+1/b)=a^xb^y`

`rArr1/(a+b)((a+b)/(ab))=a^xb^y`

`rArr(1/(ab))=a^xb^y`

`rArr(ab)^-1=a^xb6y`

`rArra^-1b^-1=a^xb^y`

⇒ x = -1 and y = -1

Therefore, the value of x + y + 2 is -1 - 1 + 2 = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Exponents of Real Numbers - Exercise 2.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 2 Exponents of Real Numbers
Exercise 2.2 | Q 18.2 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×