Advertisements
Advertisements
प्रश्न
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
उत्तर
`(a+b)^-1(a^-1+b^-1)=a^xb^y`
`rArr1/(a+b)(1/a+1/b)=a^xb^y`
`rArr1/(a+b)((a+b)/(ab))=a^xb^y`
`rArr(1/(ab))=a^xb^y`
`rArr(ab)^-1=a^xb6y`
`rArra^-1b^-1=a^xb^y`
⇒ x = -1 and y = -1
Therefore, the value of x + y + 2 is -1 - 1 + 2 = 0.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If 24 × 42 =16x, then find the value of x.
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
Find:-
`125^(1/3)`
Simplify:-
`(1/3^3)^7`