Advertisements
Advertisements
प्रश्न
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
उत्तर
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2)^(2x-2)xx(2)^(-(3-2x))=(2)(-3x)`
`rArr(2)^(2x-2-3+2x)=(2)^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
⇒ x = 5/7
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Simplify:
`(0.001)^(1/3)`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =