Advertisements
Advertisements
प्रश्न
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
उत्तर
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
`rArr(2^3)^(x+1)=(2^4)^(y+2)` and `(1/2)^(3+x)=(1/2^2)^(3y)`
`rArr(2)^(3x+3)=(2)^(4y+8)` and `(1/2)^(3+x)=(1/2)^(6y)`
⇒ 3x + 3 = 4y + 8 and 3 + x = 6y
⇒ 3x - 4y = 8 - 3
⇒ 3x - 4y = 5 ...........(i)
Now,
3 + x = 6y
x = 6y - 3 ..............(ii)
Putting x = 6y - 3 in equation (i), we get
3(6y - 3) - 4y = 5
⇒ 18y - 9 - 4y = 5
⇒ 14y = 14
⇒ y = 1
Putting y = 1 in equation (ii) we get,
x = 6(1) - 3 = 3
APPEARS IN
संबंधित प्रश्न
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`16^(3/4)`