Advertisements
Advertisements
प्रश्न
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
उत्तर
`1/(1+x^(a-b))+1/(1+x^(b-a))`
`=1/(1+(x^a/x^b))+1/(1+(x^b/x^a))`
`=1/((x^b+x^a)/x^b)+1/((x^a+x^b)/x^a)`
`=x^b/(x^b+x^a)+x^a/(x^a+x^b)`
`=(x^b+x^a)/(x^b+x^a)`
= 1
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Solve the following equation for x:
`2^(3x-7)=256`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The seventh root of x divided by the eighth root of x is
If 102y = 25, then 10-y equals
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If (16)2x+3 =(64)x+3, then 42x-2 =
The positive square root of \[7 + \sqrt{48}\] is