Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`2^(3x-7)=256`
उत्तर
`2^(3x-7)=256`
`rArr2^(3x-7)=2^8`
⇒ 3x - 7 = 8
⇒ 3x = 8 + 7
⇒ 3x = 15
⇒ x = 15/3
⇒ x = 5
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If 9x+2 = 240 + 9x, then x =
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is