Advertisements
Advertisements
प्रश्न
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
उत्तर
Given `root3 (a^6b^-4)=a^xb^(2y)`
`rArr(a^6b^-4)^(1/3)=a^xb^(2y)`
`rArra^(6xx1/3)b^(-4xx1/3)=a^xb^(2y)`
`rArra^2b^(-4/3)=a^xb^(2y)`
⇒ x = 2 and y = -2/3
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.