Advertisements
Advertisements
प्रश्न
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.
उत्तर
Given that `a = 2 + sqrt(3)`,
∴ We have `1/a = 1/(2 + sqrt(3))`
⇒ `1/a = 1/(2 + sqrt(3)) xx (2 - sqrt(3))/(2 - sqrt(3))` ...[Using (a – b)(a + b) = a2 – b2]
⇒ `1/a = (2 - sqrt(3))/(4 - 3)`
⇒ `1/a = 2 - sqrt(3)`
Now ` a - 1/a = 2 + sqrt(3) - (2 - sqrt(3))`
⇒ `a - 1/a = 2sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Simplify:
`root5((32)^-3)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The simplest rationalising factor of \[\sqrt[3]{500}\] is