Advertisements
Advertisements
प्रश्न
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.
उत्तर
Given that `a = 2 + sqrt(3)`,
∴ We have `1/a = 1/(2 + sqrt(3))`
⇒ `1/a = 1/(2 + sqrt(3)) xx (2 - sqrt(3))/(2 - sqrt(3))` ...[Using (a – b)(a + b) = a2 – b2]
⇒ `1/a = (2 - sqrt(3))/(4 - 3)`
⇒ `1/a = 2 - sqrt(3)`
Now ` a - 1/a = 2 + sqrt(3) - (2 - sqrt(3))`
⇒ `a - 1/a = 2sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
The value of x − yx-y when x = 2 and y = −2 is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Find:-
`32^(1/5)`