Advertisements
Advertisements
प्रश्न
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
उत्तर
We have, `(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
⇒ `((7 + sqrt(5))^2 - (7 - sqrt(5))^2)/((7 - sqrt(5))(7 + sqrt(5))) = a + 7/11 sqrt(5)b`
⇒ `([7^2 + (sqrt(5))^2 + 2 xx 7 xx sqrt(5)] - [7^2 + (sqrt(5))^2 - 2 xx 7 xx sqrt(5)])/(7^2 - (sqrt(5))^2) = a + 7/11 sqrt(5)b`
⇒ `(49 + 5 + 14sqrt(5) - 49 - 5 + 14sqrt(5))/(49 - 5) = a + 7/11 sqrt(5)b` ...`[("Using identity" (a + b)^2 = a^2 + 2ab + b^2),((a - b)^2 = a^2 - 2ab - b^2),("and" (a - b)(a + b) = a^2 - b^2)]`
⇒ `(28sqrt(5))/44 = a + 7/11 sqrt(5)b`
⇒ `7/11 sqrt(5) = a + 7/11 sqrt(5)b`
⇒ `0 + 7/11 sqrt(5) = a + 7/11 sqrt(5)b`
On comparing both sides, we get
a = 0 and b = 1
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(5 - sqrt2)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
The rationalisation factor of \[2 + \sqrt{3}\] is
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`