Advertisements
Advertisements
Question
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Solution
We have, `(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
⇒ `((7 + sqrt(5))^2 - (7 - sqrt(5))^2)/((7 - sqrt(5))(7 + sqrt(5))) = a + 7/11 sqrt(5)b`
⇒ `([7^2 + (sqrt(5))^2 + 2 xx 7 xx sqrt(5)] - [7^2 + (sqrt(5))^2 - 2 xx 7 xx sqrt(5)])/(7^2 - (sqrt(5))^2) = a + 7/11 sqrt(5)b`
⇒ `(49 + 5 + 14sqrt(5) - 49 - 5 + 14sqrt(5))/(49 - 5) = a + 7/11 sqrt(5)b` ...`[("Using identity" (a + b)^2 = a^2 + 2ab + b^2),((a - b)^2 = a^2 - 2ab - b^2),("and" (a - b)(a + b) = a^2 - b^2)]`
⇒ `(28sqrt(5))/44 = a + 7/11 sqrt(5)b`
⇒ `7/11 sqrt(5) = a + 7/11 sqrt(5)b`
⇒ `0 + 7/11 sqrt(5) = a + 7/11 sqrt(5)b`
On comparing both sides, we get
a = 0 and b = 1
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`2/sqrt3`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify:
`(1/27)^((-2)/3)`