Advertisements
Advertisements
Question
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Solution
We have, `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
For rationalising the above equation, we multiply numerator and denominator of LHS by `3sqrt(2) + 2sqrt(3)`, we get
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)) = 2 - bsqrt(6)`
⇒ `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2) = 2 - bsqrt(6)` ...[Using identity, (a – b)(a + b) = a2 – b2]
⇒ `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(18 - 12) = 2 - bsqrt(6)`
⇒ `(12 + 5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `2 + (5sqrt(6))/6 = 2 - bsqrt(6)`
⇒ `bsqrt(6) = - (5sqrt(6))/6`
∴ `b = -5/6`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of each of the following
`3/sqrt5`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Rationales the denominator and simplify:
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
The rationalisation factor of \[\sqrt{3}\] is
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`root(4)(81) - 8root(3)(216) + 15root(5)(32) + sqrt(225)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`