Advertisements
Advertisements
Question
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Solution
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3) = 3sqrt(3) + 2sqrt(3 xx 3 xx 3) + 7/sqrt(3) xx sqrt(3)/sqrt(3)`
= `3sqrt(3) + 6sqrt(3) + (7sqrt(3))/3`
= `9sqrt(3) + (7sqrt(3))/3`
= `(27sqrt(3) + 7sqrt(3))/3`
= `(34sqrt(3))/3`
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Express of the following with rational denominator:
`1/(sqrt6 - sqrt5)`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Simplify: \[\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}} + \frac{\sqrt{12}}{\sqrt{3} - \sqrt{2}}\]
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
`root(4)root(3)(2^2)` equals to ______.
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`