Advertisements
Advertisements
Question
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Solution
We know that rationalization factor for `4 - 3sqrt5` is `4 + 3sqrt5`. We will multiply numerator and denominator of the given expression `(4 + 3sqrt5)/(3 - 3sqrt5)` by `4 + 3sqrt5` to get
`(4 + 3sqrt5)/(4 - 3sqrt5) xx (4 + 3sqrt5)/(4 + 3sqrt5) = ((4)^2 + (3sqrt3)^2 + 2 xx 4 xx 3sqrt5)/((4)^2 - (3sqrt5)^2)`
`= (16 + 45 + 24sqrt5)/(16 - 45)`
`= (61 + 24sqrt5)/(-29)`
`= -61/29 - 24/29 sqrt5`
On equating rational and irrational terms, we get
`a + bsqrt5 = -61/29 - 24/29 sqrt5`
Hence we get `a = -61/29, b = -24/29`
APPEARS IN
RELATED QUESTIONS
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Write the rationalisation factor of \[\sqrt{5} - 2\].
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`
Rationalise the denominator of the following:
`(3 + sqrt(2))/(4sqrt(2))`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(256)^(-(4^((-3)/2))`