Advertisements
Advertisements
Question
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Solution
We know that rationalization factor for `sqrt5 - sqrt3` is `sqrt5 + sqrt3`. We will multiply denominator and numerator of the given expression `6/(sqrt5 - sqrt3)` by `sqrt5 + sqrt3` to get
`6/(sqrt5 - sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3) = (6sqrt5 + 6sqrt3)/((sqrt5)^2 - (sqrt3)^3)`
`= (6sqrt5 + 6sqrt3)/(5 - 3)`
`= (6sqrt5 + 6sqrt3)/2`
`= 3sqrt5 + 3sqrt3`
Putting the values of `sqrt5` and `sqrt3` we get
`3sqrt5 + 3sqrt3 = 3(2.236) + 3(1.732)`
= 6.708 + 5.196
= 11.904
Hence value of the given expression is 11.904
APPEARS IN
RELATED QUESTIONS
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Simplify the following expressions:
`(5 + sqrt7)(5 - sqrt7)`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt2 - 1)/sqrt5`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Write the rationalisation factor of \[7 - 3\sqrt{5}\].
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`